ISO/IEC JTC 1/SC 22/OWGV N 0152
Proposed rewrite of 7.13 of Editor's draft of PDTR 24772 [N0138]

Contributed by Larry Wagoner

26 September 2008

7.13.1 Description of application vulnerability

The software constructs a path that contains relative traversal sequence such as ".." or an absolute path sequence such as "/path/here."  Attackers run the software in a particular directory so that the hard link or symbolic link used by the software accesses a file that the attacker has control over.  In doing this, the attacker may be able to escalate their privilege level to that of the running process.

7.13.3 1 Mechanism of failure

There are two primary ways that an attacker can orchestrate an attack using path traversal.  In the first, the attacker alters the path being used by the software to point to a location that the attacker has control over.  Alternatively, the attacker has no control over the path, but can alter the directory structure so that the path points to a location that the attacker does has control over.  
For instance, a software system that accepts input in the form of: '..\filename', '\..\filename', '/directory/../filename', 'directory/../../filename', '..\filename', '\..\filename', '\directory\..\filename', 'directory\..\..\filename', '...', '....' (multiple dots), '....//', or '.../...//' without appropriate validation can allow an attacker to traverse the file system to access an arbitrary file. Note that '..' is ignored if the current working directory is the root directory. Some of these input forms can be used to cause problems for systems that strip out '..' from input in an attempt to remove relative path traversal.

There are several common ways that an attacker can point a file access to a file the attacker has control over.  A software system that accepts input in the form of '/absolute/pathname/here' or '\absolute\pathname\here' without appropriate validation can also allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can inject a drive letter or Windows volume letter ('C:dirname') into a software system to potentially redirect access to an unintended location or arbitrary file. A software system that accepts input in the form of a backslash absolute path () without appropriate validation can allow an attacker to traverse the file system to unintended locations or access arbitrary files. An attacker can inject a Windows UNC share ('\\UNC\share\name') into a software system to potentially redirect access to an unintended location or arbitrary file. A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The symbolic link can permit an attacker to read/write/corrupt a file that they originally did not have permissions to access. Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a sensitive file (e.g., etc/passwd). When the process opens the file, the attacker can assume the privileges of that process.

 A software system that allows Windows shortcuts (.LNK) as part of paths whether in internal code or through user input can allow an attacker to spoof the symbolic link and traverse the file system to unintended locations or access arbitrary files. The shortcut (file with the .lnk extension) can permit an attacker to read/write a file that they originally did not have permissions to access.

 Failure for a system to check for hard links can result in vulnerability to different types of attacks. For example, an attacker can escalate their privileges if he/she can replace a file used by a privileged program with a hard link to a sensitive file (e.g., etc/passwd). When the process opens the file, the attacker can assume the privileges of that process or possibly prevent a program from accurately processing data in a software system.

