	Template for comments and secretariat observations
	Date:
	Document: ISO/

	1
	2
	3
	4
	5
	6
	7

	MB1

	Clause/
Subclause/
Annex/Figure/Table
(e.g. 3.1, Table 2)
	Paragraph/
List item/
Note/
(e.g. Note 2)
	Type of com-ment2
	Comment (justification for change)
	Proposed change
	Secretariat observations
on each comment submitted

	JP comments on ISO/IEC PDTR 24772.2
	Date: 2012-09-09
	Document: JTC 1 SC 22 N 4736

	1
	2
	(3)
	4
	5
	(6)
	(7)

	NB1

	Clause No./
Subclause No./
Annex
(e.g. 3.1)
	Paragraph/
Figure/Table/Note
(e.g. Table 1)
	Type of com-ment2
	Comment (justification for change) by the NB
	Proposed change by the NB
	Resolution
on each comment

	JP 1
	Entire
	Entire
	Te
	It was proposed to raise the coverage of CWE on the N4704, i.e. PDTR 24772 at the WG23 meeting. Although the comment was accepted in principle, concrete resolutions were not present, no modification was made.

JP comments propose to raise the coverage of CWE top 25, and analysed how they are addressed. There are so many CWE’s that it may not be easy to address to all of them. However, if we concentrate on the most quoted CWE’s i.e. CWE top 25, then we can make meaningful improvements with the limited efforts.

The attachment 1 is the result of the analysis whether 24772.2 address to the CWE top 25 or not.

Out of 25, 14 are covered and 11 are not covered.

Out of 11 uncovered, four corresponding descriptions were found in the TR24772.2. So this means TR24772.2 has coverage of 18 CWE, and there are only 7 CWE which are not covered.

So, descriptions are drafted for CWE’s that are not covered by the TR 24772.2.

If we can add four references, and 7 new descriptions to the TR 24772.2, then we can improve that TR 24772.2 covers all of CWE top 25.
	The steps are described one by one in the following rows.
	

	JP 2
	6.10.2
	Cross reference
	Te
	To raise the CWE top 25 coverage, add the reference.
	Add the following line after the CWE: 129, to denote the reference to the CWE 676.
676. Use of Potentially Dangerous Function

	

	JP 3
	7.21.2
	Cross reference
	Te
	To raise the CWE top 25 coverage, add the reference.
	Add the following line after the CWE: 807, to denote the reference to the CWE 862.

862. Missing Authorization
	

	JP 4
	8.8.2
	Cross reference
	Te
	To raise the CWE top 25 coverage, add the reference.
	Add the following line after the CWE: 642, to denote the reference to the CWE 311.

311. Missing Encryption of Sensitive Data
	

	JP 5
	7.24
	New
	Te
	Create the 7.24 as shown on the right column.
	7.Z Download of Code Without Integrity Check [???]
7.Z.1 Description of application vulnerability

The product downloads source code or an executable from a remote location and executes the code without sufficiently verifying the origin and integrity of the code.

7.Z.2 Cross reference

CWE:

494. Download of Code Without Integrity Check

7.Z.3 Mechanism of failure

An attacker can execute malicious code by compromising the host server, performing DNS spoofing, or modifying the code in transit.

7.Z.4 Avoiding the vulnerability or mitigating its effects

Perform proper forward and reverse DNS lookups to detect DNS spoofing. Encrypt the code with a reliable encryption scheme before transmitting.

This is only a partial solution since it will not prevent your code from being modified on the hosting site or in transit.

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Specifically, it may be helpful to use tools or frameworks to perform integrity checking on the transmitted code.

If you are providing the code that is to be downloaded, such as for automatic updates of your software, then use cryptographic signatures for your code and modify your download clients to verify the signatures.
	

	JP 6
	7.25
	New
	Te
	Create the 7.25 as shown on the right column.
	7.Y Incorrect Authorization [???]

7.Y.1 Description of application vulnerability

The software performs an authorization check when an actor attempts to access a resource or perform an action, but it does not correctly perform the check. This allows attackers to bypass intended access restrictions.

7.Y.2 Cross reference

CWE:

863. Incorrect Authorization

7.Y.3 Mechanism of failure

Assuming a user with a given identity, authorization is the process of determining whether that user can access a given resource, based on the user's privileges and any permissions or other access-control specifications that apply to the resource.

When access control checks is incorrectly applied, users are able to access data or perform actions that they should not be allowed to perform. This can lead to a wide range of problems, including information exposures, denial of service, and arbitrary code execution.

7.Y.4 Avoiding the vulnerability or mitigating its effects

Ensure that you perform access control checks related to your business logic. These checks may be different than the access control checks that you apply to more generic resources such as files, connections, processes, memory, and database records. For example, a database may restrict access for medical records to a specific database user, but each record might only be intended to be accessible to the patient and the patient's doctor.
	

	JP 7
	7.26
	New
	Te
	Create the 7.26 as shown on the right column.
	7.X Inclusion of Functionality from Untrusted Control Sphere [???]

7.X.1 Description of application vulnerability

The software imports, requires, or includes executable functionality (such as a library) from a source that is outside of the intended control sphere.

7.X.2 Cross reference

CWE:

829. Inclusion of Functionality from Untrusted Control Sphere

7.X.3 Mechanism of failure

When including third-party functionality, such as a web widget, library, or other source of functionality, the software must effectively trust that functionality. Without sufficient protection mechanisms, the functionality could be malicious in nature (either by coming from an untrusted source, being spoofed, or being modified in transit from a trusted source). The functionality might also contain its own weaknesses, or grant access to additional functionality and state information that should be kept private to the base system, such as system state information, sensitive application data, or the DOM of a web application.

This might lead to many different consequences depending on the included functionality, but some examples include injection of malware, information exposure by granting excessive privileges or permissions to the untrusted functionality, DOM-based XSS vulnerabilities, stealing user's cookies, or open redirect to malware.

7.X.4 Avoiding the vulnerability or mitigating its effects

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI AccessReferenceMap provide this capability.

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.
	

	JP 8
	7.27
	New
	Te
	Create the 7.27 as shown on the right column.
	7.W Improper Restriction of Excessive Authentication Attempts [???]

7.W.1 Description of application vulnerability

The software does not implement sufficient measures to prevent multiple failed authentication attempts within in a short time frame, making it more susceptible to brute force attacks.

7.W.2 Cross reference

CWE:

307. Improper Restriction of Excessive Authentication Attempts

7.W.3 Mechanism of failure

The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. Once the attacker gained access as the member of the support staff, he used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.

7.W.4 Avoiding the vulnerability or mitigating its effects

Common protection mechanisms include:

Disconnecting the user after a small number of failed attempts

Implementing a timeout

Locking out a targeted account

Requiring a computational task on the user's part.

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

Consider using libraries with authentication capabilities such as OpenSSL or the ESAPIAuthenticator.
	

	JP 9
	7.28
	New
	Te
	Create the 7.28 as shown on the right column.
	7.V URL Redirection to Untrusted Site ('Open Redirect') [???]

7.V.1 Description of application vulnerability

A web application accepts a user-controlled input that specifies a link to an external site, and uses that link in a Redirect. This simplifies phishing attacks.

7.V.2 Cross reference

CWE:

601. URL Redirection to Untrusted Site ('Open Redirect')

7.V.3 Mechanism of failure

An http parameter may contain a URL value and could cause the web application to redirect the request to the specified URL. By modifying the URL value to a malicious site, an attacker may successfully launch a phishing scam and steal user credentials. Because the server name in the modified link is identical to the original site, phishing attempts have a more trustworthy appearance.

7.V.4 Avoiding the vulnerability or mitigating its effects

Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or "blue." Use a whitelist of approved URLs or domains to be used for redirection.
	

	JP 10
	7.29
	New
	Te
	Create the 7.29 as shown on the right column.
	7.U Uncontrolled Format String[???]

7.U.1 Description of application vulnerability

The software uses externally-controlled format strings in printf-style functions, which can lead to buffer overflows or data representation problems.

7.U.2 Cross reference

CWE:

134. Uncontrolled Format String

7.U.3 Mechanism of failure

The programmer rarely intends for a format string to be user-controlled at all. This weakness is frequently introduced in code that constructs log messages, where a constant format string is omitted.

In cases such as localization and internationalization, the language-specific message repositories could be an avenue for exploitation, but the format string issue would be resultant, since attacker control of those repositories would also allow modification of message length, format, and content.

7.U.4 Avoiding the vulnerability or mitigating its effects

Ensure that all format string functions are passed as static string which cannot be controlled by the user and that the proper number of arguments are always sent to that function as well. If at all possible, use functions that do not support the %n operator in format strings.
	

	JP 11
	7.30
	New
	Te
	Create the 7.30 as shown on the right column.
	7.T Use of a One-Way Hash without a Salt [???]

7.T.1 Description of application vulnerability

The software uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the software does not also use a salt as part of the input.

7.T.2 Cross reference

CWE:

759. Use of a One-Way Hash without a Salt

7.T.3 Mechanism of failure

This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques such as rainbow tables.

7.T.4 Avoiding the vulnerability or mitigating its effects

Generate a random salt each time you process a new password. Add the salt to the plaintext password before hashing it. When you store the hash, also store the salt. Do not use the same salt for every password that you process.

Use one-way hashing techniques that allow you to configure a large number of rounds, such as bcrypt. This may increase the expense when processing incoming authentication requests, but if the hashed passwords are ever stolen, it significantly increases the effort for conducting a brute force attack, including rainbow tables. With the ability to configure the number of rounds, you can increase the number of rounds whenever CPU speeds or attack techniques become more efficient.

When you use industry-approved techniques, you need to use them correctly. Don't cut corners by skipping resource-intensive steps (CWE-325). These steps are often essential for preventing common attacks.
	

Attachment 1 Coverage analysis table of TR 24772.2 against CWE top 25 and its amelioration
	Rank
	Score
	ID
	Name
	TR24772
	Insecure Interaction Between Components
	Risky Resource Management
	Porous Defense

	1
	93.8
	CWE-89
	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
	7.12
	
	
	X
	
	

	2
	83.3
	CWE-78
	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
	7.12
	
	
	X
	
	

	3
	79
	CWE-120
	Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
	6.9
	
	
	
	X
	

	4
	77.7
	CWE-79
	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
	7.13
	
	
	X
	
	

	5
	76.9
	CWE-306
	Missing Authentication for Critical Function
	7.7
	
	
	
	
	X

	6
	76.8
	CWE-862
	Missing Authorization
	None
	7.21
	Add to 7.21.2.
	
	
	X

	7
	75
	CWE-798
	Use of Hard-coded Credentials
	7.23
	
	
	
	
	X

	8
	75
	CWE-311
	Missing Encryption of Sensitive Data
	None
	8.8
	Add to 8.8.2.
	
	
	X

	9
	74
	CWE-434
	Unrestricted Upload of File with Dangerous Type
	7.1
	
	
	X
	
	

	10
	73.8
	CWE-807
	Reliance on Untrusted Inputs in a Security Decision
	7.21
	
	
	
	
	X

	11
	73.1
	CWE-250
	Execution with Unnecessary Privileges
	None
	7.5
	Add to 7.5.2
	
	
	X

	12
	70.1
	CWE-352
	Cross-Site Request Forgery (CSRF)
	7.21
	
	
	X
	
	

	13
	69.3
	CWE-22
	Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
	7.18
	
	
	
	X
	

	14
	68.5
	CWE-494
	Download of Code Without Integrity Check
	None
	
	Add *1 somewhere
	
	X
	

	15
	67.8
	CWE-863
	Incorrect Authorization
	None
	
	Add *2 somewhere
	
	
	X

	16
	66
	CWE-829
	Inclusion of Functionality from Untrusted Control Sphere
	None
	
	Add *3 somewhere
	
	X
	

	17
	65.5
	CWE-732
	Incorrect Permission Assignment for Critical Resource
	7.6
	
	
	
	
	X

	18
	64.6
	CWE-676
	Use of Potentially Dangerous Function
	None
	6.1
	Add to 6.10.2
	
	X
	

	19
	64.1
	CWE-327
	Use of a Broken or Risky Cryptographic Algorithm
	7.19
	
	
	
	
	X

	20
	62.4
	CWE-131
	Incorrect Calculation of Buffer Size
	6.9
	
	
	
	X
	

	21
	61.5
	CWE-307
	Improper Restriction of Excessive Authentication Attempts
	None
	
	Add *4 somewhere
	
	
	X

	22
	61.1
	CWE-601
	URL Redirection to Untrusted Site ('Open Redirect')
	None
	
	Add *5 somewhere
	X
	
	

	23
	61
	CWE-134
	Uncontrolled Format String
	None
	
	Add *6 somewhere
	
	X
	

	24
	60.3
	CWE-190
	Integer Overflow or Wraparound
	6.16,6.17
	
	
	
	X
	

	25
	59.9
	CWE-759
	Use of a One-Way Hash without a Salt
	None
	
	Add *7 somewhere
	
	
	X

1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China)
** = ISO/CS editing unit

2
Type of comment:
ge = general
te = technical
ed = editorial

NB
Columns 1, 2, 4, 5 are compulsory.

page 1 of 15
FORM 13B (ISO) version 2001-09
1
MB = Member body (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)

2
Type of comment:
ge = general
te = technical
ed = editorial

NOTE
Columns 1, 2, 4, 5 are compulsory.

page 1 of 11
ISO electronic balloting commenting template/version 2001-10

